%, 1JRP.ORG

ISSN: 2708-3578 (Online)

248

Using conflict-free replicated data types to suppdwck
editing
Quentin Le& Martin Li#, Cas van Rijfy Wang Hao Warfy Bert Willem$, Stef
Busking, Martin Middel, BartGerritsert

aTU Delft
Fonto

Abstract

Recent times once more informedaiethe relevance of capable online collaborative tools. For our online
collaborative XML editorwe have looked into technologies for constrained block editing whiclyjrape
schemas such as with XML, permit on- and off-line users or sgerstdd, delete, copy, move, split and
merge blocks of text. To that end, we studied the current state cdt@pat Transformations (OT) and
Conflict-free Replicated Data Types (CRDT). Furthermore, afézction of the best-ranking enabling
technology, we studied existing CRDT implementations for unstedttaxts, and extended a Logoot-
based CRDT to implement on-and offline split and merge block stuperdesigned a generic concept
and created a scientific prototype to test the conceps@oitectness. For now, we neglected undo and
redo operations. Within these limitatiomse show that our prototype converges under most circumstances.
Weverify causality and assess the experience of user eititerg. Finallywe giveanoutlook and design
recommendations for production implementations, and suggestiontiaciding the problem of cyclic
referencesn block mergers.

Keywords: Collaborative online editing; online-offligellaborative tools; constrained block editing; stuwed text editing; conflict
free replication; splitting merging blocks; logoaided CRDT

1. Introduction

Today, the vast majority of document editing is dondahie use of feature-rich software environments
supporting all basic tasks required for rich-text editiryjsion, publishing and archiving, complete with
document history. Principal examples are Microsoft Wiwr@oogle Docs. Somef these software even offer
users the abilityo collaborate with multiple distributed editas-editing the same document simultaneously,
on- and offline. Thiscansignificantly reduce the timfer documentso beproduced and converged into a final
form. Collaborative editing can be among humans, but atsang other agents, such as reporting tools,
loggers, or web feeds. Automated and human editing mayimggtinstance template-endowed documents,
supporting the inlay of structured blocks of data in a stregf@ishion. Multi-agent, multi-source editing
applications are founid automated-online contracting and trading, code basegaaremnt systems, and many
other domains.

1JRP 2022, 110(1), 248-275; doi:.10.47119/1JRP10011011020223978 WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

ISSN: 2708-3578 (Online)

249

1.1 Block editors

Block-based editors are feature-rich software environisnevhich allow for the editing of structured
content without the need of having knowledge about tldenlying data structure. In feature rich text-editing
the usecanmake any changa any time. While this gives more freeddnalso limits the amourdf structure
a document has. Structured content aims to organizertaatcording to some predefined syntactic schema.
One of the advantages of structured content is easgietification of elements, by humans as well as agents,
Khare and Rifkin, 1997. Also, content can be validated agairformalized and configuration maintained
schema thatanbe sharecbr exchanged, allowinfpr easy exchange among different editors.

Fonto is a company developing products for authoring an@éwewj structured content. The current
version of Fonto’s editor supports a limited form of collaborative editing, in which a user needs to acquire a
’lock’ to gain editing rights for a document. This prohibits users from editing the document for which they do
not have the lock. The idea is to investigate whetlierent editors can be enhanced with on- or offline,
distributed collaborative editing possibilities, whilegge/ing block-editing.

The goal of this paper is to research the possibilityotihborative block-editing and create a prototype
incorporating this. Main challenges are to support a vapietperations types, such as operations on atomic
text elements, as well as block-based operations ikert, delete, move, merge and split blocks, thereby
guaranteeing convergence and preserving user editing.inten

Several research efforts have already been repamtin possibilitie®f collaborative block-editing, Oster
et al., 2006, Ignat et al.,, 2017, Martin et al., 2010, Davis land 2010. Ignat et al., or other types of
collaborative editing. Our research strategy is to expdsrsting concepts of collaborative editing, extend
selected existing ideas with block editing, and provide fiedrprototype.

1.2 Organization of this paper

This paper is organized as follows: after this introductiiosgction 2 we zoom in on the current
state of online collaborative editing concepts, tldaiia structures, operations, their limitations, and
merit their potential for the research task at handedtian 3, we outline the design of our concept,
its data structures and its operations. Section 4 prebentenstruction of the created prototype. We
will discuss and demonstrate htoweach overall convergeniefinite time.We will discuss howve
have tested the prototype and how we have verifiedctinectness of our prototype. Section 5
describes and discusses resa#tthey materialize from automated and manual testingection 6nve
evaluate these results, conclugtehe achievements and validate conclusions. Finaéyyill present
our outlookon further progressve see fit and possible.

2 Background
2.10Tand CRDT

Two of the most frequently used technigteeenable user® work collaboratively are

Operational Transformations (OT) and Conflict-free Regpéid Data Types (CRDT), Nicolaesextal., 2016.

OT is a technique that transforms the index of operatiortske into account the effects of concurrent
operations and assures replica convergence. OT is widety/for rich-text editors such as Google Docs and
Etherpad, Ahmed-Nacer et al., 2014. OT can be both ceetiafi.e. running on a server) and decentralized,
Ahmed-Nacer et al., 2011. In OT operations need to Insforaned to repair inconsistencies, Santosh and
Khunteta, 2010. In order too repair those inconsistencieased a history buffer and/or an operation vector,
Ahmed-Nacer, 2011.

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

250

The use of CRDT is more recent than OT and while CRidToves some of the drawbacks of OT, it also
introduces new challenges. Being relatively new, CRDT suppmurrently only two canonical (or: atomic)
data types: plain text and arbitrary tree structures suchl 3@ XML, but only in a rudimentary way. Like
OT, CRDT seekso reach eventual consistency over multiple coexistingunmtes (copies), Ahmed-Nachf,
(2011). Operationsn CRDTSs are concurrent and commutative, exploiting attstigta types sudmslists and
ordered trees. CRDT requires no history of operatiomd,re@ detection of concurrency in order to ensure
consistency. CRDT has the potent@butperform OTsn termsof time aswell asspace complexity, Ahmed-
Nacer, 2011.

2.20Tversus CRDT

After the above course analysis, we found CR®®ffer the best prospedisr our extension, because:

1. it breaks down editing instructioimshighly granular activities

2. it thus offers the best optiofts complex operations involving blocks

3. it scales better with growing numhsrediting agents (human editors and automated editing sjeam
4. itisintrinsically less vulnerable to delays and eventstthppen offline

In the sequel of this research, we will focus on CRDTré&lagee various variants and implementations of
CRDT. We will discuss them further, below.

2.3CRDT correctness

In earlier workon CRDT, considerable attention has gtmthe definitionof correctness of CRDT:
for a resulting CRDT to be correct, it has to respectQBe criteria, Weiss et al., 2008, Sun et al.,
1998:

1. Causality: All operations have been ordered by a precedelation
2. Convergence: The system has converged; all replicadeartical when the systemin idle state
3. Intention: The expected effect (the user editing intent) of atmgdbperation can be observed on all
replicas.
For block editing, as of yet, it is unclear as to \Weetthese CCI criteria are also sufficient, or
additional criteria will have to be added. In the below aiglysing qualified reasoning, we seek to
identify arguments to sharpen the research questions Waeewaltlining further down.

2.3.1Causality and block editing

Causality implies order-able sequenoésperations, and imposing and maintainamgrder by meansf
a precedence relatiaf all operations. Likdor current-state CRDT, a precedence relation will bésoeeded
for block editing. The precedence relation must howeveextended such that it also supports block
operations. Important question: can we do so independent foot dontent?

In this paper, we might first seek to stay close toGkr criteria and try to design a generic concept,
providing a framework to which the handling all block-spediiternals can be added later on, if needed; a
framework that facilitates the handling ordered sequenfagzerations genericallyVe do not wanto go into
the detailof every structure, languages and syntax, but rather take aoggogroacho block editing. While
examining literature, we observed that the notion dbeklis still largely missing. We define a block in this
paper as a container, demarcated by the block markers @egiock, endef-block), empty or filled with
arbitrary text contertf any structure, language syntax suclasother blocksln any implementation, deletion
of the block requires both block-markers, along withabntentin betweento beremoved. Blocks containing

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

ISSN: 2708-3578 (Online)

251

other (nested) blocks are delimited by the outermost blaatkens, as indicated in the user editing intent.
Blocks inside are assumed to be part of the block contemblick contains multiple pairs of block markers,
the first endef-block marker at the same level level of nesting adh#genof-block marker, terminates the
block.

2.3.2Convergence and block editing

Convergenceés atthe very essenad online collaborative editing. The notioficonvergencés evidentin
the context of CRDT, Weihai and Sigbjarn, 2020, and for béatiing this notion will not be any different.
The time frame in which editing operations evolve aochglete may be elongated. This is not believed to
disqualify or invalidate this criterion for block editinghere is no reason either, to do anything extra with
respecto convergence, for block editing.

2.3.3Intention and block editing

Obviously, for block editingo berelevant, the user editing intent mbsiconverted int@n end result that
can be achieved at reasonable cost, defined as: aitbepptable number of instructions. Again, no clue as to
this aspect bearing relevance for block editing could be foutiteiature. We may reason, however, that
working with a compound of editing operations in a blockhwaitssible delays, may make the assurance of
user editing intent to be correctly reflected in the exwit, at best tedious. In all cases, user intention must
comply to the schema of the embedding context, i.e.,tstejdanguage and syntax. In case of a violation,
users musghbe able to derive what has gone wrong, and tmeorrect from the current state.

2.3.4Conclusion criteria for block editing

CRDT employs the CCI criteria for correctness. Althoughifouad no evidence whatsoever in literature,
by qualified reasoning, it appears that the CCI criteria qually apt for correctness in the case of block
editing. We therefore presume we may rely on the C®&raj until our research reveals this turns out to be
a wrong.

2.4 Commutative and convergent CRDT

Implementations of CRDT have two distinct approaches:nuatative Cai et al., 2022, and convergent,
Shapiro et al., 2011. Commutative CRDT are primarily operdiased; they maintain information about the
start, progress, and completion of operations. Theaioglef operations is preserved. Convergent CRDT are
state-based; they are defigiand keep trackf the CRDT state. More about this below.

2.4.1 Commutative CRDT

Commutative CRDT are basically operation-based, meanirightbga copy their local operations to other
CRDT, so other CRDT can perform the same operationntchsgnize. The forwarded editing changes may
be received by targeted CRDih a different order than sen#s a resultof routing and transmission
characteristics. Consequently, one challenge to overcunem using commutative CRDTS, is to handle
operations that may have arrive in a different order teaty 8aquero et al., 2017. Solving this problem can
be obtained by using a clock and timestamps. Currentffigrelift such clock implementations are known
Demibiras et al., 2017. The advantage of commutative CRI$ smplicity of implementation and its low
networking work load.

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

ISSN: 2708-3578 (Online)

252
2.4.2Convergent CRDT

Convergent CRDT are state-based, meaning that they senditiode state vector with every operation
they communicate to other CRDT. Peer CRDT receive tate and update their own state to mirror exactly
the received state. The most important part of the cgexme CRDT is the merge method, which essentially
takes two corresponding replicas of the same logical engigplving any conflicts, and produce an updated
stateasan output, Sypytkowski., 2017. The merge method must conotimee properties:

1. The commutative property: when state vectors are mengedatter whichstatis takenasthe source and
which as the target the result must converge to a sistdse and object

2. The associative property: the final impact of an arrayodfemerged statevectors must be the same
irrespective of the order of arrival or processing

3. ldempotent property: the result mbstexactly the same object (i.e, the sameblwdidocksin our case),
even if operations are carried multiple times on the sabjext. The idempotent property states that it is
not neededo care about potential duplicates

2.4.3Last-Writer-Wins-Element-Set

Some CRDT concepts we encountered in literature, sapedific problem or focus on a specific aspect.
The Last-Writer-Wins-Element-Set CRDT LWW for shorbased on the use of timestamps. All operations
and elements in the CRDT are assigned a timestamgllapgkrations will be executed in the order of these
timestamps, Shapiro et al., 2011 Whenever a conflisegrithe operation with the most recent timestamp is
the one that wilbeexecuted. This takes out the probleihoperations instructions arrivifgr synchronization
of duplicatesn another order than sent. Time stamping instrucimaslesign aspewte will address later on.

2.4.4Sequence CRDTs

Sequence CRDT are sequences, amagsdered setef CRDT objects. These CRDZANnbe usedto build
a collaborative text-editor. Literature repastsdifferent such implementations. The general id@aostly the
same. Each element gets a unique posititime document and this positimsaved somewhere. When adding
an element, it gains a unique position and is added tettaestructure in which the positions are saved. This
approach has been introduced earlier in OT environments, asi6Google Docs. In a sense, it copies the
technique of dynamically embedding intelligent objétta text. When deleting the objeittis either a delete-
andreorganization of the data structure, or the posgi&ept in the data structure and the element is marked
asa tombstone, i.e. deleted and/or make inaciiavisibleto keep the structure intact. Updatiagelement
is not supported by all sequence CRDT, most implementatidgssupport deletion and insertion of atomic
text elements, Ahmed-Nacetal., 2014.

Sequence CRDT algorithms share the convergence propegydifference among implementations of
this sort is mostly in flexibility; some versions grdupport deletion and insertion while others also support
the update operationsf embedded elements. Thels also a differencen time-complexity for these
algorithms. The same holds true for space-complexity, ARNwer et al., 2014, Brietal., 2016.

2.5Evaluating CRDT for block editing

Kleppmann and Beresford described using CRDT for concurremgdit JSON, which uses structured
blocks and a syntax for encoding and could therefore be usefalr research, Klepeman and Beresford,.
2017. The problems solved in the paper by Kleppmann and Beres®ridowever focusing mostly on
conflicting insertions and deletioms a JSONobject. Kleppmann and Beresford do not consider moving,

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

ISSN: 2708-3578 (Online)

253

splitting, and merging blocks of text, involving a sendamgl a receiving context, we believe are essential
operationdor our research. For the caseX®L -encoded texts, conflict resolutiemobviously dependeran

the structured language definition, like XMXSL Stylesheets, (X)HTML, etd.o movean XML block from

a sending environment to a receiving block requires an XMick in the receiving environment, to keep the
XML tree sane. Both any preparatory actions in theivexe context, as well as getting the sending context
in the state of the point of sending, requires proper aboter precedence relations. Yet, causality must be
strong enough to transparently materialize the user gditiant. We will defer this problem to our design of
the extended concejpt section 4.

Even more simple use cases carbaaieglected: onef the reasons that a standard CRDT would not work
immediately for block editing without modificati@i mostof the conceptds becausén block editing, blocks
can be embedded in a sequence in a larger context. If thrés Biecnested that way, deleting the middle
block requires the third block to be moved and placed inahant second position in the CRDT, so that it is
directly following the first block. Otherwis& most CRDT conceptse foundin literature, the bottom block
would typicallybe seemasa partof the middle block and aldm deletedlIf not processedsa single operation,
it might render CRDT copies incorrect. The use of our blodikitlen with block markers (see above) may
already improve opportunities to resolve this probleut,i®in itself not sufficient. The precedence relation
also hago be updated accordingly.

2.6 Research questions

The main research question that has been specifiedtiors 1:

Can we extend (an existing)on- and offline collaborative editimgept to support block-based insert,delete,
move, split and merge operations?
can nowbe broken down into:

1. Howto ultimately define a block in the contedftthe proposed extended CRDTconcept?
2. Howto deal with block structure, language and syntax genegricall

3. How to handle anticipate and generically handle cordfieimbedding contextand block?
4. How to use preserve and exploit the precedence relatmur iextended concept?
Testing and validation will focus on assuring @@l criteria are upheld and sufficient.

3 Design block-based editing concept
3.1From analysiso design

After this elaborate analysis, we need to outline lmproceed with the design of the extended concept.
Knowing the research questions, we can now selectetefitting concept from literature to depart from. To
this end, we will explore repositories on GitHub and dbitIRepositories will be chosen based on extend-
abhility, flexibility, and the degreef needed operationtsalready contains. More in particular:

e Does the concept present the present stafeund in literature?

e |sits code base in the repository well documented?

e Can the concept and code base (and its tool suite) potefakyxtended to the projected extended concept
we describe in this research?

Overlooking, evaluating and weighing the detailed researchtigogedormulated, we decided to use
commutative CRDT, offering easier updates of the current, siatk allowing easier addition of different
operations.By carefully inspecting the GitHub repositories, the Logouplementationby T-Mullen
(Github(https://github.com/tmullen/logoot-crdt) has beencsett asthe best candidate. This Logoot

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

254
implementation is completely based on the Logoot paper bgsvéeal, 2009. In section 3.2.1 the workings
of this logoot implementation will be explaingdmore detail.

We evaluated the way Mullen has implemented the CRDT $ariimg and deleting characters. It is our
prediction that mosif the extensions needést block editing couldeimplemented by merely expanding the
code base. This will serve as the concept prototygs#eimentation to depart from. Its correctness will be
verified and validated. To create a research prototypthe extended concept, we design and implement the
above extensioria an extended research prototype.

3.2 Design block-based editing concept
3.2.1 Basic Logoot implementation

The Mullen Logoot uses a tree structure to support thetimsemd deletion of text. Initializing a Logoot
instance, creates a basic tree consisting of ootenade with two child nodes, which serves as a begih a
end node of the document. The child nodes of the gjartiot node always have the Id 0 and base which
define the lower and upperbouafthe ids. The valuef base shoulte decided basedn the use case Nedelec
et al, 2013. A high base for example is not very efficiethere are not many insertions. For the examiples
this paper, we use a base of 256. An example of such treevim $n figure 1. Every node has a position,
which consists of a sequence of identifiers. In this seguehe last item is the identifier of this node, whilst
all other identifiers specify the path to follow from ttoet to get to this node. An identifier consists of@n
a site, and a clock. The Id is an integer that is mairdg fier determining the position. The site is a string
used to identify which user performed the operation. The& ékan integer which represents the count of
operations performed by that particular user. All thiemonents are usdor determining the placemefar
the node. So when the Ids are the same, the site ie#iealue to compare with. Similarly, when the sites
are identical, the clock will be compared. Since tlelcis the operation count, if all three are the satne, i
means that it is the exact same operation. Howeveimnify this in this report, when an Id is mentioned,
theld of the identifier of that particular nodemeant.

Fig. 1 Basic tree for the Mullen Logoot

3.2.2 Insert and delete nodes

Every insert operation must haaeindex, such that the CRDT knows whévénsert the value. The index
will be used to generate a node in the correct position itrékeby making use of the nodes which will become
neighbors of the tbeinserted value. The neighbor nodes in the tree aeutrent node at the given index
and the node at the given indé@x The index will be limited to the amount of child nodteshe tree - 2, to
ensure that this operatias bounded correctly. For consistent and efficiehgeneration between the two

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP'ORG

ISSN: 2708-3578 (Online)

255

neighbor nodesye use the LSEQ algorithm, Nedeletal., 2013, which was already implementedhe
Mullen Logoot.

Algorithm 1: Insertion of value on given index
Result: Updated tree
Parameter : value
Parameter : index
Parameter : depthFirstSearch(start, index) return node at given index in
depth-first manner starting from node start
ract +— toot node of the tree;
left neighbor + depthFirstSearch(root,index);
right _neighbor « depthFirstSearch(root, index+ 1);
position +— LSEQIdGeneraror(left neighbor, right neighbor);
node + Insert node at position and assign value to it;

When a node is inserted in the CRDT from one cliérsemds out a message containing the position and
the content of the node all remote CRDT instances. The receiving CRDT instaremmsive this message and
build on the exact same position a node with the samentpiftéhere exists no node on that path already.
When there is already a node on the exact positiorgpteration will be aborted. We can safely do so, since
the Id, site and clock all must be equal to be on the gxition. Since the clock can never be the same for
two different operations, we can safely say that the operhtie already been received and processed.

Algorithm 2: Receiving an insertion operation from remote CRDT

Result: Updated tree
Parameter : value

Parameter : position
it position already exists then
| Return
end
node +— Insert node at position and assign value to it;

Similar to the insert operation, the delete operationt imaxge an index. The index will lead to a node in
depth-first manner, which should be removed from the tlegever, when this node contains (non-empty)
child nodes, we will only set the empty flag of thale to true, which will convert this node to a tombstone.
When the node does not have childienandirectlybedeleted from the tree. The CRDT will also recursivel
go over the parent nodes of this node to check if thesbeaemoved from the tree as well. We can remove
this parent if the parent is a tombstone and has noémpty) children. This process is called trimming. Just
like the insert operation, a message is sent out congathi position of the deleted node, such that the
receiving CRDT can delete the exact same node frornagbe

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) ‘.\ IJRP.ORG

ISSN: 2708-3578 (Online)

256

Algorithm 3: Deletion of node on given index
Result: Updated tree
Parameter : index
roor +— root node of the tree;
node +— depthFirstSearch({root index);
Set empty atiribute ol node to true;
Trim the tree starting from nede;

Algorithm 4: Heceiving a delete operation rom remote CRDT

Resull: Updaled tree

Parameter : position

root +— tool node of the tree;

node +— getNodeFromPosition(root, position);

Set empty attribute of rode to true Trim the tree starting from node

Both insert and the delete operations will send messag#her CRDT with their respective path of the
inserted or deleted node. This implies that all the CRDITcantain the exact same tree structure with the
same content since all nodes Wwidlinsertedor deletedon the same path. Becausé CRDT contain the same
tree structure, convergence is guaranteed.

3.3 Design objectives

For the extended concept based on the Mullen logeotow identify the following design goals:

Add inserting and deleting atomic text elements

Implement the notioonf a block and extend the CRId insert and delete blocks

Implement moving blocks a given positionin (the structure, syntax of) thedocument

Extend the CRDT to perform a spiit a block into two valid blocks

Extend the CRDT to merge two blocks into one block

Extend the CRDTo converge with block editing operatioimsarbitrary order,such its precedence order
can be reconstructed
The first design objectivis already answered with this current CRDT implementatisexplained above.
The last design go# currently only answereftr the insert and delete operation, but other operatiorstitire
missing.

ok wNE

3.4 Design and implementation of the block support

To add block support (design objective 2) to this CRDT, thesntitrogoot tree will be altered to support
block operations. The main idea behind this new design isvihavill have one main Logoot instance and
recursively use Logoot instances within this main Logostaince to support blocks, as also discussed by
AhmedNacer, 2011. This introduces the idea of ’block nodes’, which differentiates itself from the known
nodes for atomic text elements. Every block node wilitainits own Logoot instanci the CRDT, resulting
in nested tree structures. The block nodes are insaregctly the same fashiasthe basic Logoot instance
for characters (atomic text elements). With this appra&ebe want to insert atomic text in a block, we can
simply searctior the corresponding block node and perform exactly the sesee operation described earlier
for atomic text. If we manage extend the concept this way, we will have reached defigttive 2.

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

ISSN: 2708-3578 (Online)

257

Each block node is identified with a blockld and containsgobbinstance. The blockld is independent
of the main Logoot and is a unique randomized string, allothiagnain Logoot to search for the node based
on blockld. Introducing this notion, all atomic text opesasi should include a blockld along with the
operation, specifying the block on which the operatiorukshbe performed on. This allows the CRDT to
delegate the operation to the corresponding block ever ifltick gets moved, merged or split. Inserting block
nodes (insertBlock) can be done in exactly the same maniresessng atomic text. The only difference is
that we will create a block node insteaaf a node containing atomic text. For deleting block nodes
(deleteBlock)we can also use the same approach. The only diffeietitatwe will searchfor the block node
based on blockld instead of index.

3.4.1 Block operations

As for the block operations (block-move, block-merge, blogk-split; design objectives 3-5), new
approaches had bethoughtof in orderto guarantee convergence, since CRDT should also support opserati
which are executed offline. The latter requirement drafticatreases the complexity of the code, since the
order of the operations can differ per CRDT replica. Ev@sration should be able to converge when the
order of executioris different.

CRDTs converging when operations are executed offline &iieuttito handle. For example, insert
operations are performed before someone splits a blodkepfflo the order of operations is flipped for this
user. This means that at one replica the insert opesaéire split correctly, while the other replica instrés
insertion in the wrong block (fig. 2). Our designs for theckimove, block-merge and block-split operation
should take such scenarios into account.

WWw.ijrp.org

%, 1JRP.ORG

ISSN: 2708-3578 (Online)

258

Quentin Lee/ International Journal of Research Publications (IJRP.ORG)

blockld: abcde

{Offline) split operation from crdt 1

3}

Crdt1

Receives insert operation: {a, 244} afier split

blockld: abcde blockld: vwxyz

Crdt2

Receives split operation after insertion

blockld: abcde blockld: vwxyz

Fig. 2 Two CRDT diverge when both CRDT are working offlirsing the split and insert operation
3.4.2 Move block

The suggested approach for block-move (design objective 3)fidl@ss. Moving block A requires an
index, which is used for determining the new position. Whenrttwe operation is called, we will simply
insert a new block B at the index we want to moveblbek to. Then we will transfer the Logoot of block A
to block B and eventually remove blogk Block B will be assigned the same blockddthe deleted block,
to ensure that all other tme-performed (offline) operations will be performed in blockTBis remedies the
lack of convergence, without the need to puzzle theegerwe relation (fig. 3).

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG)

e ——

Offline
Move operation

1

Create new block

|

Receive operations Move content from
for moved block "moved block” to new
after going online block

|

Delete "moved block”
and transfer its id to
the new block

v

\ , Find new block based!
onid

|

Execute operations
on correct block

Fig. 3 Precedence relation scheme for néflllock-move with insert operations.

Algorithm 5: Moving a block to given index

Result: Updated tree

Parameter : blockld

Parameter : index

root +— root node of the tree;

block « searchBlock(root, blockld)
newBlock « insert Block(root index, blockld)
Lransler block logoot Lo newBlock. logoot
deleteBlock(block)

Algorithm 6: Receiving a block-move operation [rom remote CRDT

Result: Updated tree

Parameter : blockld

Parameter : position

root +— root node of the tree:

block « searchBlock(root,blockld)

newBlock + insert Block(root, position, blockld)
transfer block.logoot 1o newBlock logoot
deleteBlock(black)

% URP.ORG

atio of Research Publica
ISSN: 2708-3578 (Online)

259

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) ‘.\ JJRP .ORG

ISSN: 2708-3578 (Online)

260

3.4.3 Split block

The approach for splitting a block (design objective 4)kisodows. Splitting a block requires an index,
such that the CRDTandetermine wher#o split the block. For thisye will introduce the’ SplitNode’, which
will represent a virtual split the block. When block 4s split, block A will insert &SplitNode’ accordingo
the index, just like the normal insertion. A new bl&kvith a new blockld, wilbe created right nexb block
A and copies the exact same tree struatfildock A into blockB. For blockA, the blockld will stay the same
and all nodes after the SplitNode will be removed. FackbB, all nodes before and including the SplitNode
will be removed (fig. 4). When offline operations happen atstirae time as the split operation, it might
happen to be an operation which should be performed on a inelebergthan the SplitNode in block A. In
these cases, the operation should be delegated to bi&ikd& every operation is sent individually, it can
easily be checked whether it should be delegated sindeftimeighbor of the tde-inserted node should be
the SplitNodén these cases. Delegating the operatidoslock B would stillconverge, since the tree structure
of block A and block B are exactly the same. Therefihre position that is emitted through the message is
still valid for blockB.

blockld: abcde

blockld: abcde

Fig. 4 Splitting block A using references

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) f.\ JJRP'ORG

ISSN: 2708-3578 (Online)

261

Algorithm 7: Splitting a block on the given index
Result: Updated tree
Parameter : blockld
Parameter : index
root +— root node of the tree;
block, blockIndex + searchBlock(root, blockld)
splitNode, splitlndex < insertSplitNode(block.root, index)
newBlock + insertBlock(root, blockIndex)
copy block logoot Lo newBlock logoot
Remove all nodes from index [0, splitIndex| from block
Remove all nodes from from index [splitindex+ 1, end| from newBlock

Algorithm 8: Receiving a block-split operation from remote CRDT
Result: Updated tree
Parameter : blockld
Parameter : newBlockId
Parameter : newBlockPosition
Parameter : splitPosition
roct +— root node of the tree;
block, blockIndex + searchBlock(root, blockld)
splitNode, splitindex «— insertSplitNode(block.root split Position)
newBlock + insert Block(root, newBlockPosition, newBlockld)
copy block.logoot Lo newBlock.logoot
Remove all nodes from index [0, splitIndex| from block
Remove all nodes from from index [splitindex+ 1, end| from newBlock

3.4.4Merge blocks

For the block-merge operation (design objective 5), the approhanges the end node of block A into a
merge node. So when block A and block B are merged, blosill £hange its end node to a merge node,
which contains a referenteblock B. This guarantees the statiethe block where the merge node v put
at the end of the block (fig. 5). Since in this approaldtkbB stays intact, operations executed on block B
from another user will still converge, even after a m¢fige 6). Merging a block which already has a merge
node, would result in delegation of the block-merge ojmerab the referenced block specified in the merge
node. As can be imagined, different sequences or (offlireeenoperations can lead to divergence of the
states. To ensure that all block-merge operationgglilt in consistent states on the receiving end, We wi
give all merge operation a timestamp upon inserting. Weegiving a merge operation, we will remove all
merge nodes from the two block nodes which shbaleherged. After thative will re-insert the merge nodes
including the newly added merge node in chronological order.ré iee conflict (the CRDT wants to insert
a merge node in a block, but it already exists in thekplave delegate the insertMergeNode operation to the
reference nodim the found merge node. This ensures that all replicasthawame ordef merge operations.

WWw.ijrp.org

@ IJRP.ORG

emational Journal of Research Publications
ISSN: 2708-3578 (Online)

262

Quentin Lee/ International Journal of Research Publications (IJRP.ORG)

Algorithm 9: Merging two blocks on their given blocklds
Resull: Updaled tree
Parameter : leli Blockld
Parameter : right Blockld
root +— root node of the tree;
le ftBlock « searchBlock{root leftBlockld)
right Block + searchBlock(root, right Blockld)
mergeNode < insertMergeNode(le ftBlock, right Blockld)
right Block isMerged + true;

Algorithm 10: Receiving a block-merge operation from remote CRDT
Result: Updated tree
Parameter : leftBlockld
Parameter : rightBlockld
Parameter : mergeReference
root — toot node of the tree;
le ftBlock « searchBlock(root,le ftBlockld)
right Block < searchBlock(root , right Blockld)
mergeRe ferences <
set{getMergeRe ferences(leftBlock), getMergeRe ferences(right Block), mergeRe ference}
sort mergeReferences on timeStamp
for reference & mergeReferences do
insertMergeNode(re ference. from, reference.to, re ference.timestamp) set
according nodes to merged
end

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) IJRP ORG

'IsS: 27083578 (Unlnm]

263

blockid: abcde blockld: vwxyz

@EE @S

- W = -

1
(Merged)
blockld: viwxyz

5T B8

blockld: abcde

Fig. 5 A valid statef the blocks when block A and block B are merged

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) f.\ JJRP'ORG

ISSN: 2708-3578 (Online)

264

P —
Offline

Merge operation

(Merge A and B)

e —

\ 4

Add merge node to
end of block A, with
reference to block B

A 4
Set status of block B
to merged (so its
content is shown as
part of biock A)

l

Find block B based
on id (stiil exists)

l

Execute operations
on correct block

Receive operations
or block B after going
online

Fig. 6 Precedence relation scheme for offline blockgmevith insert operations.

4 Experiments

After designing and implementing the extended CRDT, we wilfop@r two experiments to test the
correctness of our extended CRDT. The first experimenttlseiform of automated tests, while the second
oneisin the form of a manual test.

4.1 Enumeration tool for automated tests

To run automated tests, a testing framework will be dpeel in which tests are generated using a script.
The generation of tests will require a starting stategtaof operations, and a sequence of operations to be
performed. The framework will then enumerate through albiplis scenarios (exhaustive testing), starting
from the starting state, with the set of operatidiniese scenarios are tested in an offline as well aslaeo
setting. This will form a tree, where each child nala result of a performed operation on the parent node.
The depth of the tree is determined by the amount pEsteince asserting all possible scenarios will be
exponentially large, there is a possibility of pruning dagler of the generated tree included in the testing
framework. This way, still an effective variety ekt cases can be tested within a reasonable amatimteof
Figure 7 will depict what this pruning process looks likedach level. The states that are executed will be
tested for convergence by comparing the outpthe CRDTSs.

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) ‘.\ IJRP.ORG

Inte escarch Public
ISSN: 2708-3578 (Online)

265

Fig. 7 A pruning percentage 60%is uphold for each leveh the tree for all possible combinatioofsoperations

4.1.1 Automated test the Mullen Logoot

As a first stepyve verify the Mullen Logoot code baseproduce the correct resulf® do sowe are going
to use the automated testing framework desciiibéite previous section. The initial Logoot was alreadyed
for correctness by Mullen, but the model will once morgelsted on correctness with randomized operations
within our testing frameworko ensure a valid basier our extended concept. The initial Logoot only consists
of insert and remove operations. The framework will stih a starting state, containing three character nodes
and generates tests for all possible insert and depeteations whilst being online and offline. Since the
correctness was already tested by Mullen, only a relgtdmall selectionf possible operations witletaken
into consideration for each level of the tree by ugingiing. The states that are not pruned will be further
explored while the pruned states are deleted from theTtheesettings that were used for the test generation
is shownin table 1. Nexto the automated testse will also write some unit tests supplement the automated
tests.

Table 1 The test suite ustxtest combinationsf the insert and delete operations

Text Settings
Test Insert Delete # Steps. Prune (%)
1 X X 4 97

4.1.2 Automated testingf the extended CRDT

Totest the extended CRIO®r correctnessye are goingo make use of a combination between unit tests,
integration tests and generated tests using the awgtdrtesting framework. Combinatorics involved render
exhaustive testing infeasible, and therefore, we considerioatitims of operations having high risk to conflict
with each other, such as splitting a block while movireygame block. These cases are included as our edge
cases. A list of all combinations tested (set of djara, pruning percentage and amount of operations) are
given in table 2. As table 2 reveals, (combinationsopfrations differ in pruning percentage. The pruning
percentage results from experiments done with manualdestimeveal combinations that are particularly
error prone. Merge and split with other operations arexample of this. Therefore we have many test suites
with merge and/or spltb search for these bugs.

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

ISSN: 2708-3578 (Online)

266

Table 2 The test suites usextest combinationef operations. The pruning percentagthe percentage of test cases removed from the
tree.

Test Textin block Block Settings
Insert Delete Insert Delete Move Split Merge #Steps. Prun(%)

1 X X 2 95

2 2 90

3 X X 2 90

4 X 3 0

5 X X X 2 97

6 X X X 2 99

7 X 2 96

8 X X 2

9 X 4

10 X 2 90

11 X X X 2 99

12 2 50

13 X X 2 97

14 2

15 X X X X X X 1

4.2 Editor design

User editing intent lacks a concise validation criteribis not possible to use our testing framework for
that purpose. To adequately test whether the CRDT raspset editing intent, a special purpose editor will
be developed to collect user experiences while manesliynt user editing intent. In our block-based editor,
we use begirof-block and endbf-block identifiers to identify blocks of text. In this approaithjould be
difficult to visualise merge, move and split operationiser&fore, we designed this block-based editor to
contain multiple text areas, where each text area mmes block of text. Using this approach, it will be
visually clear what a block is and how the documentctire changes after specific operations have been
applied. The merge, split and move operation mglexecuted using a button click instead of a hotkey.

To sendmessageso different online editors, WebSockets Wil used. Further implementation details are
deemed irrelevanfor the discussion. WebSockets maikepossible for this editoto show real-time
collaborative editing on different devices. CRDT do notdnaecentral server (section 2). However, for the
ease of the implementation of the editor, we have aeateentral server architectufer our editor
implementation. This central senisused to store datamemory whichcanbeusefulif we wantto reproduce
specific scenarios.

4.2.1 Editor features

The editor contains the designed functionality laid @ewthe design objectives. The operations include:
Inserting text in a block
Deleting textin a block
Inserting a block
Deleting a block
Splitting a blockat a given index

arwbdRE

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) ‘.\ JJRP 'ORG

6. Merging two blocks
7. Moving a block to a given index

In addition to these features, offline support and some eistialisations are added to simulate situations
where one or multiple users work offline. In addition, tjiiges users a better view of what happens with the
CRDT when editing blocks.

Offline support in the editor

The first additional feature that witke addedjs an offline working mode toggle. This feature allowstas
simulate arbitrary networking delay. We have merely addesl fédture to the editor for analysis and
verification purposes. Offline support does not introduceaatdjtional functionality to the CRDT itself. In
the editor, there will be a button which can be useddgléothe editor to online or offline mode. If the editor
is offline, all received editing requests will be postponed thre editor goes online. Likewise, the outgoing
editing requests wilbe buffered until the editor returnis online mode.

Split block at cursor

Parsed text

Sl block st cursor

Fig. 8 The editor createaka proofof concept
4.3 Manualtesting

Manual testing is mainly used for verifying the user intétdwever, the editor can also be used to visualize
and replay scenarios from the automated tests. Uaarsse all kinds of CRDT operations and inspect for
undesired or unexpected behavior, and poor user editing intemhistory of operations will be kept to be
able to reproduce unexpected behavior, if encountered. Tidedetich scenarios we are going to test
manually, we are going to look at the result excerpteh the automated tests and reproduce/modify tests
which failed earlier in the development process.

5 Results

This section presents the results of the tests deddrilthe previous section. We discuss results in view
of the research questions staiedection 2.

5.1 Test results
5.1.1 Automated tests
The automated tests that were generated to verify thectoess for the initial Mullen Logoot repository

brought umoissues. One minor bug was foundhe Mullen Logoot: a small fractiarf the statés not parsed
correctly, resultingn run time errors. After correcting this bug, the tastesshowed convergender all

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ IJRP .ORG

ISSN: 2708-3578 (Online)

268

possible combinations. We generated exhaustive caswsfapr operations per CRDT. Pruning is used to
verify cases with more operations per CRDT replica. ffa@ing rate was approx. 0.97 with only 3% being
iterated further on. To test CRDT to be consistent, wéhratest suite 1000 times, none failed.

For our extended concept CRDT, various combinatbrmperations have been tested quasi-exhaustively,
as explained. All combinations of tested operationshasvn in table 2 resulted in test cases passing, except
for the merge operation. This merge operation caused aiténtbop when two offline CRDTs created a
circular merge. Thigs the first concept flawit will be discussed in greater detailsection 5.2.

5.1.2Manualtests

The manual tests showed promising resuoltee overall performancé:showed thabur extended concept
is quite robust with stable convergence. Only a smadtifna of specific combinations in sequential order
resulted in unexpected behavior, though still convergiitty ether CRDT. Manual analysis also informed us
about a second concept flaw: content loss due to a gpeeifi of combination of split and merge operations.
Further discussionn this concept flaw followén 5.2 too.

5.2 Discussion concept flaws

The first concept flaw is the circular merge. What hapjgetisat twvo CRDT seek to merge the same set
of blocksin opposite order, while being offline (and only the®gif the CRDT have block 1,2 and 3 and one
CRDT merges block 1 and 2 and block 1 and 3 sequentially, whildtaimaously the other CRDT merges
block 3 and 2 and block 3 and 1 sequentially, the evel@BDT will have blocks containing circular
references, see figure 9 for an illustration.

Fig. 9 A situation in which a circular merge occurs

One way to solve this, and how we would propose to wonknatthis problem, is to assign one principal
CRDT to each collaborative edit session, where thecipdh CRDT is the only CRDT which is allowed to
execute the block-merge. But still any CRDT can issueckimerge request. This will resirita single-point
of control, where the principal CRDT needs to verifyratjuests for possible circular references. Another
solution strategyo solve this issués using timestampdEachmerge operation gets assigned timestamp,

WWw.ijrp.org

%, 1JRP.ORG

ISSN: 2708-3578 (Online)

269

Quentin Lee/ International Journal of Research Publications (IJRP.ORG)

and after each merge operation, all merge operationbaviverted and reordered based on their timestamp.
All merge operations wilbe re-executedin this revised order. Before applyirall merge operations, the
algorithm will checkif there are circular referencdswill checkif for example, block 1 has a refererice
block 2 and block 2 has a referena®lock 1.If a circular referends found, the timestamps wilie compared
and the merge operation with the highest timestarigbeignored, thereby effectively removing the circular
reference. The problem with this approagithatin our concept;t is not known whetheall users who had
used the merge operation have been online and excharegedghrations. Wheall the CRDTs have the
same state, removing the same merge reference abudtlse problemwWe did not further go into this issue.

The second concept flaw fouirdthe current implementation of the extended conisgptit when splitting
a block and merging the two resulting blocks from the split, the content belonging to the ’right-side’ part of
the block could be lost on all replicas. Analyzing tase revealed that the cause is in the sequence of a
MergeNode after a SplitNode. Since every insertion afedioe after the SplitNode will be redirected to the
reference block, the MergeNode will be inserted in thereefce block, causing the content loss.

We found the following solution to solve this: adding a In@gism which would allow the CRDT to
distinguish whether an operation has been executed beforerahafiasertion of a given SplitNode. Then,
the CRDT should only redirect the operation if it was exagtiefore the operation of the SplitNode. This
would make sure that the SplitNode only does what desgned for: redirect nodes which were inserted
before the split in block x, but should be in block y after split. Implementing such an algorithm would be
complex, but feasible. When encountering a SplitNode giteiving CRDT should be akie communicatéf
the sending CRDT did this operation before receiving thieNgge or after.

With these modifications, all tests pass and adequatesdging intents obtainedor block editing.

6 Conclusion

This section will evaluate and conclude on the resutts/shin the previous section. Next, we review the
research questions set out and discuss what the answes m@search questions are based on these results.
Finally, this section will discuss what the next steggsfar this CRDT to extends it functionality or improve
its performance.

6.1 Higher-level interpretatioof the results

We have shown that a present state CRDT can be extetrdéghtforwardly to support block editing.
Inserting atomic text elements such as characters in bldekating characters in blocks, inserting blocks
(creating new blocks), deleting blocks, moving whole kéosplitting blocks, and botin- and offline support
for these operations. A block in our work, is simply defims a collection of text elements, possibly nested
blocks, bounded by a begai-block andan endef-block marker. A block markaranbe a dedicated tokeof
choice, including a line break, dependorgthe structure, language syntax involved. This clear and explicit
demarcation of a block is the only common denominatdrdbparates a block from its embedding context.
Its embedding context can be another block, so that a bbrtkbe moved into another block. The merge
operation implemented needed an additional provision ti aicular merges in offline mode. We have
given a solutiorfor this. Another case deserving further attentithe potential content loss when performing
multiple split and merge operatior the same blockwe also gave a solutioffor this. With these
modifications, all tests (automated and manual) pass.

Implementing the merge functionality was the most tosoesuming operation to implement, because
merging blocks in combination with moving and splittingdis and offline support has a huge amount of
edge cases requiring careful attention. It has been showf dhéy one (principal) CRDT can merge, it will
always resulin convergence. Ultimately, preventing lifting the infinite loopin the circular merge permitting

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

ISSN: 2708-3578 (Online)

270

multiple CRDTSs performing a merge operations at the sames may be the ultimate solution. The potential
content loss after a specific split-merge operation carefipedied too, as described in the previous section.
Our implementation has been designed for research purpogesfirst place. Both of the above issues were
studied, but not yet well patched in our implementation, a&téued to be easily tackled in a more refined
and mature implementation.

As a concrete block editing application, we implemertgerations on an XML block. Given the simple
yet concise block definition, we had no difficulties iaking the XML block editing work. Although still a
bit premature, this leads us to believe that, indégs ,niight be a path towards a generic and easy to adapt
concept. The more so, because we narrowly followed theeMudlesign to extend the concept, whenever we
could.By taking a blockasa container, possibly containing nested bloak)lock-internal operationsanbe
postponed and left to confined postprocessing, provided blperations, such as creating, deleting, moving,
splitting and merging a block are accommodated. This isabe i0 our extended concept. The user editing
intent is provided for by crisp causality, control otlee precedence relation in all forwarding, buffering and
processing of editing instructions. We found a fittingesoh for id-assignments to blocks, based on the
original Mullen implementation.

Regarding the run time efficiency (linear &jof all implemented operationis,is too earlyto concludeon
the performance for practical purposes. Further testsdifferent input sizes are needed to indicate whether
they are efficient enough for practical usage. Curremttybenchmarks have been performed to check for
which file size or even tree size operations becoreficient. This could be a next step into further ezsk.

6.2 Strengths and weaknesses analysis

One strengttof the Mullen CRDTis how blocks have been implemented: basically each Ihlasits own
CRDT for the content in the block as a Logoot field. EaBDT already has the basic infrastructure needed
for the creation of blocks. Therefore, it should notdifécult to implement nested blocks in this CRDT.
Depending on further algorithmic details, this may inczethe complexity of the move, merge and split
operations.

Another strength of this CRDT implementation is that ngresyof nodes could easily be added to the
CRDT.If special nodes wete beadded addeih supportof structure, languagar syntax, these could easily
beadded to the current satnodes, rendering this CRDT implementation easily extendable

Finally, this CRDT implementation us8SONobjectsto send messagés other replicas. This means that
there is a lot of freedom to decide how to implemenntttevork layer. This could be done the same way it is
implemented in the editor using WebSocketsany other way of sending strings over the internet.

One of the drawbacks the Mullen concept and its baseh=ogg is that each character is a node by itself
and therefore the tree size can become extremely Venge editing large documents. Large trees will most
likely result in slower insertions and deletions of chimec For practical usage, it is important, that tkee t
size andts implementation will be optimised.

Another weakness, also in the field of tree sizehas tieleting nodes might create many tombstones. A
tombstone will be created if the node the user isdrio delete has child nodes or if a user tries to delete a
block. For small documents this does not matter, but oresse gtart deleting lotsf text,an abundant amount
of tombstones may be spawn. This might result in unnageskwer insertions and deletions of text, since
the CRDT might have to traverse all the tombstdodind a node.

A further aspect of the Mullen approach that may takieimking, is that the searchBlock method uses a
BFS algorithm. This is not the most efficient algorithonfind a block as quick as possible and when the
amount of blocks$n the document increases, this algorithm will also gmtrest.

We discussed the mergimgd blocksin the previous sections, ame outlined a methotb keep away from
deadlock situations. When merging a large amofilocksin one block, the complexity of this approach

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

271
might increase considerably, as every previous mergetmperalated with the blocks will be removed and
inserted again after every merge operation.

In the split block approach, another recommendatiomipraovement is that for every split operation, the
whole block is copied to the newly inserted block. Wheittsg extremely large amounts of content, every
node has to be created again and this might take soraéf tine size of the block is large. This is unwanted
behavior, since with real-time collaborative editingers expect operations to be visible instantly.

6.3 Achievements and conclusions

The main research question we posed in the beginning ofapés pddressed the possibility to extend an
existing statesf-the-art CRDT concept to support block editing. We have dedig concept realizing this.
Our achievement shows that the research quesi@onbe answeredas follows. We found a fitting
implementation dut Mullen, that servedsa fitting departuréor our researchlt couldbe provento comply
to theCCl-criteria generally accepted for CRDAyr null hypothesisWe achievedo extend this concept and
makeit support block-editing operatioimsa waysothat the extended concept again shoteetbmplyto the
CCl criteria (extended hypothesis). We thereby;

e gave an elementary yet appropriate definition for a blaese@rch questionl). Literature did not provide
such a definition. Its simplicity reflects its easeimaplementation and its further options for concise
containment of block-internal aspects (research que8jion

¢ managed to extend the Mullen identification mechanisméakenit support blockids (research question
2), so handling and processing it could also fit in the iegigirocessing and handling. This is important
to achieve; contained-yeteagyextend block editing operations, completely independent fhenblock
structure, language, and syntax (research question 3 ant 4)emonstrated this by using XML-blocks
in our proofing. For full fledged implementatioh XML, there will beno needto dig deep down into the
handling of block; a overarching XML-tree parsing can bplémented to keep the XML tree of the whole
document sane

¢ showed that the precedence relattanbe maintained and preservedthatin all cases (research question
5), we obtain (eventual) convergence in a stable mannerdpdowe implement provisions to avoid
circular reference while merging block. Causality iersty and user editing intent is intuitive and stable
(correctness criteria). Nothing has come up suggestinghtba€Cl criteria are insufficient for block
editing. We managedo embed block editing within the Mullen concépsuch a way that theCl criteria
werein jeopardy, or needed be augmented somehow

We claim that the flawed aspects we signalled, can didneemoved in a more robust production design
and implementation with the pointer we gave. Based on tlobsevaments, our conclusion is therefore that
we have shown that the current state of the art CRDT dublozk editing in a way compliant to the CCI
criteria, in onand offline situationfgr any amounbf CRDT, without central server orchestration.

6.4 Pointers for further research

In this section we intend to give further recommendatito further improve the concept, based on our
experiences. The first optimisation is regarding the siee. As mentioned before, the tree size could
extremely grow once the document size improves. Beesize could drastically be reduced by storing a string
in a node instead of a separate character in each nodevétowben a user wants to insert in that string, the
string still needs to be split in two nodes. Researchaltaady been done about this in the following paper,
Yu, 2012.

Another way to reduce the tree size, is to performnelpa once no user is editing the document. Such
clean up could functioms a garbage collector and could remove tombstones frentrée, remove split

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP .ORG

272
references and remoedl merge references from the CRBy adding thento the block the refer to. Cleaning
up the merge references will also mitigates the previtaseribed weakness regarding merges, since after
every clean up, all merged blocks will be reduced to ooekhlith no merge references. Cleanups will also
optimise the split operation, since tree size bélfeduced, less content has to be copied to the new block.

To overcome the circular references in the merge protassigning additional governance to a principal
CRDT (master copyanremove the problenaswe have shownlt may alsderemoved by some additional
agent, orchestrating the references during operatiorigglarbay provisionally be represented by a projected
block while offline, being executed while online again.He tatter option, one has to sacrifice user editing
intent to overcome the merge-block issues, which maypaalesirable. Another path to improvement is to
immediately remove the edge which has the highest timesitathe circle. However, this approach is rather
ineffective for solving more than one circular referersiece multiple CRDTs of multiple replicas can form
different cycles, which will then converge to differaircular references. An approach which might work is
to saveall merge references and construct a directed graph whithins all the references. The only problem
left to solve, is to commonly find the same path with all CRDfcduding all the connected nodes (if possible).
Since each replica contains the same refereifa@spmmon patbanbefound, then all replicas would merge
the same blocks and therefore the replicas would cgaver

To optimise the searchBlock algorithm, a different athanicould be used to find the blocks. Instead of
using BFS to find the block, a CRDT could keep track of a coeypaining the blockld and the path to the
blockor the blek itself. This would optimise the searchBlock algorittt®(1). To make this algorithm work
however, one should ensure that the mapheillpdated correctly after every block operation.

Finally, regarding a combination with the merge and spiration: as described in the previous section,
the current issue with the merge and split operation, isstthme merge nodes may be redirected after being
inserted due to a split node. This could incur undesirbeMier in some cases, and sought behavior ieroth
cases. When a block is already split, the merge withblloak would be redirected to the new block created
by the split operation. This undesired since the block was already split and theceeghbehaviour woultde
to merge that blockT o solve this problem however, some distinction shbelshadeasto whether something
was done before the split operation or after. When thimdtion carbemade, this problem can be solved.

We constrainedour researchin that we neglected undo/redo operations. Now tha managedto
minimized the intermingling of basic whole-block operatiwith blockinternal operations, a next step could
be to investigate the possibility of doing the sammeuftdo/redo operations: splitting whole-block undo/redo
from block-internal undo/redo. Another limitation that cesearch had, like other research we consulted in
literature, is that user editing intent is a weak notioastgess. Capturing user editing intent, formalizing it in
a concept, and make it measurable, would be a great stegrdio Finally, the issue of editing nested blocks
within the CRDT deserves further attenti@ofar, we reliedon the outer block markete define what a block
is. As explained, a block can be nested within anottoeamkbland a block can be moved into the embedding
contextof another block. For generic block editing, this suffitésers can select the block they wimmnove,
split, etc. within their editor. That is the block under concPerhaps, using a recursive approach, more elegant
operationcanbe definedfor nested blocks. This could ag&iea useful topic for further research.

7 Outlook

The extended concept as presented can be adapted foctmmodwrposes relatively easily. For YAML,
JSON, XML, source code, and many other purposes, it canraffv collaborative editing scenarios. Further
tailored implementationgor blockinternalscan provide further block editing comfort and extensions.
Environmentsn which blocks are not yet exploitédthe full extenor not employedatall, cannow consider
block operations. Asynchronous block-wise broadcastimglti-casting, and other formsf content
distribution or contento-creationmaybenefit from it.

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ IJRP .ORG

ISSN: 2708-3578 (Online)

273

Once our concept wilberobust and resilient enoudbr usein multi-agent environments, networksaaf
editing CRDT, fueled by artificial intelligence, are lested to be able to draft documents that may just need
some supervision and a final human touch to finalizés bt only relieves humans from manual character-
by-character editingt also discloses much wider aremmdsiata and knowledge.

Acknowledgements

Authors would like to thank Fonto for making this resegwobksible, and their valuable guidance and
feedback.

Conflict of interest

Three of the authors team are working for Fonto comgiamgoxml.com) . Their role in this research has
been primarily to provide advice, guidance, and feedbadk@results and assess its practical value for their
activities.

Authors have no relevant financial or non-financial resés to disclose. Authors have no conflicts of
interest to declare that are relevant to the cortktitis article. The authors have no financial or pretariy
interestdn any material discussed in this article.

References

R. Khare andA. Rifkin. Xml: a doorto automated web applications. IEEE Internet Computii4):78-87,1997.
Gérald Oster, Hala Skaf-Molli, Pascal Molli, and &l&laja-Jazzar. Supporting Collaborative Writing of XEbcuments. Research
report,2006.
Claudia-Lavinia Ignat, Luc André, and Gérald Oster.d&ming rich content wikis with real-time collabomati Concurrency and
Computation: Practice and Experience, Ma26i7.
Stéphane Martin, Pascal Urso, and Stéphane Weidab& XML Collaborative Editing with Undo. Researchp@e RR-7362, INRIA,
August2010.
Stephen J Davis and lan S Burnett. Collaborative egitsing an xml protocol. In TENCON 2005 - 2005 IER&gion 10 Conference,
pages 15, 2005.
Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ramma. Near real-time pe¢o-peer shared editing on extensible data types.
In Proceedings of the 19th International Conference on Supporting Group Work, GROUP 16, page 39-49, New York, NY, USA,
2016. Association for Computing Machinery.
Mehdi Ahmed-Nacer, Pascal Urso, Valter Balegas, amtoNPreguica. Mergin@T and CRDT Algorithmsln 1st Workshomn
Principles and Practiagf Eventual Consistency (PaPEC), Amsterdam, Netherlakpid, 2014.
Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald @dtsyun-Gul Roh, and Pascal Urso. Evaluating CRDTs fmlRime
Document Editing. In ACM, editor, 11th ACM Symposiwom Document Engineering, pages 032, Mountain View,
California, United States, Septemi2ér11.
Kumawat Santosh and Ajay Khunteta. A sureeyperational transformation algorithms: Challengesiés and achievements.
International Journalf Computer Applications3,072010.
Mehdi Ahmed-Nacer. Abstract unordered and ordered trett, Decembez011.
Stéphane Weiss, Pascal Urso, and Pascal Molli. atogdP2P collaborative editing system. Research R6713,INRIA, 2008.
Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun YamgjDavid Chen. Achieving convergence, causaliéggrvation, and
intention preservation in real-time cooperative edittystems. ACM Trans. Comput.-Hum. Interact., 5(1)16®8, March 1998.
CRDT for block editing: concept and implementat&in
Weihai Yu and Sigbjgrn Rostad. 2020. A low-cost set TRBsed on causal lengths. In Proceedings of thevéttkshop on Principles
and Practicef Consistency for Distributed Data (PaPoC '20). Assiatidbr Computing Machinery, New YorlY, USA, Article
5, 1-6. https://doi.org/10.1145/3380787.3393678

Cai, W., He, F. and Lv, X. Multi-core accelerated CRID large-scale and dynamic collaboration. J Supercom®, 1079910828
(2022). https://doi.org/10.1007/s112022-04308-7

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marelr&d. Conflict-free Replicated Data Types. ResedRelport RR7687,
Inria— Centre Paris-Rocquencourt ; INRIA, Augusta.

Baquero, Carlos, Almeida, Paulo Sergio, and Ali. Pperation-based replicated data types, Z0dt7.

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ JJRP 'ORG

ISSN: 2708-3578 (Online)

274

Murat Demirbas, Marcelo Leone, Bharadwaj Avva, Deepakidppa, and Sandeep S. Kulkarni. Logical physicaks and consistent
snapshot globally distributed database)14.

Bartosz SypytkowskiAn introductionto state-based crdts, D2617.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marekr&d. A comprehensive study of convergent and emutative replicagd
data types. IEEE Transactioos Parallel and Distributed Systems, 28(10):50,2&h1 .

Loick Briot, Pascal Urso, and Marc Shapiro. High goessiveness for Group Editing CRDTSs. In ACM Internagio@onference on
Supporting Group Work, Sanibel Island, FL, Unitdtes, Novembe2016.

M. Kleppmann and A. R. Beresford. A conflict-free iegted json datatype. IEEE Transactions on ParaltDastributed Systems,
28(10):27332746,2017.

Stephane Weiss, Pascal Urso, and Pascal Molli. dtodoscalable optimistic replication algorithm forlledorative editing on p2p
networks. In Proceedings of the 2009 29th IEEE International Conference on Distributed Computing Systems, ICDCS *09, page
404-412, USA,2009.IEEE Computer Society.

Brice Nédelec, Pascal Molli, Achour Mostefaoui, andntanuel Desmontils. LSEQ: an Adaptive Structure faugaces in
Distributed Collaborative Editing. In 13th ACM Sympasiwn Document Engineering (DocEng), pag&s46, Florence, Italy,
Septembef013.10 pages.

Brice Nédelec, Pascal Molli, Achour Mostefaoui, andnianuel Desmontils. Lseq: An adaptive structure fousages in distributed
collaborative editing. In Proceedings of the 2013 AGjnposium on Documeifingineering, DocEng *13, page 37-46, New
York, NY, USA, 2013.Association for Computing Machinery.

Weihai Yu. A string-wise crdt for group editing. Proceedingsf the 17th ACM International Conferenee Supporting Group Work,
GROUP’12, pagel41-144, New York, NY, USA2012.Association for Computing Machinery.

WWw.ijrp.org

Quentin Lee/ International Journal of Research Publications (IJRP.ORG) @ IJRP.ORG

International Journal of Research Publications
ISSN: 2708-3578 (Online)

275

Appendix. A Legend

-
-

-~

e

1
blockid: abcde SaREE e) > blocktd: fghij FEREEEE 1 blockid: vwxyz

HOOOoE

Amerged block. this is a BlockNode that is merged inside
another block and can only be accessed through the
MergeNode pointing to this block

| blockid: vwxyz !

A BlockNode. this block is a block with its own Logoot instance
blockid: abcde which contains Start, End, Split, Character and Merged Nodes
which makes up the content of this block

The Root of the entire CRDT, this is the start point of a Logoot
instance that contains a StartiNode, a EndNode and all
BlockNodes

The StartNode tree, always the most left node of a Logoot tree
and indicating the start

The EndNode tree, afways the most right node of a Logoot free
and indicating the end of the tree

A CharacterNode, contains a character which will be printed
when the entire CRDT is being read

A SplitNede, contains a reference to a block, when an
operation is received with an index bigger than the SplitNode’s
index, it is propegated to the referenced block

A MergeNode, references a merged block, when the base
block receives an operation for the merged block this Node is
r ible for p ing the i

A Tree, this is a Node which has children

HOOO®OO

Fig.10 Legend

WWw.ijrp.org

